Mitigating the knowledge acquisition bottleneck for Hungarian word sense disambiguation using multilingual transformers
A major hurdle in training all-words word sense disambiguation (WSD) systems for new domains and/or languages is the limited availability of sense annotated training corpora and that their construction is an extremely costly and labor-intensive process. In this paper, we investigate the utilization...
Elmentve itt :
Szerző: | |
---|---|
Testületi szerző: | |
Dokumentumtípus: | Könyv része |
Megjelent: |
2021
|
Sorozat: | Magyar Számítógépes Nyelvészeti Konferencia
17 |
Kulcsszavak: | Nyelvészet - számítógép alkalmazása |
Tárgyszavak: | |
Online Access: | http://acta.bibl.u-szeged.hu/73359 |
Tartalmi kivonat: | A major hurdle in training all-words word sense disambiguation (WSD) systems for new domains and/or languages is the limited availability of sense annotated training corpora and that their construction is an extremely costly and labor-intensive process. In this paper, we investigate the utilization of multilingual transformer-based language models for performing cross-lingual WSD in the zero-shot setting. Our empirical results suggest that by relying on the intriguing multilingual abilities of pre-trained language models, we can infer reliable sense labels to Hungarian textual utterances in the all-word WSD setting by purely relying on sense-annotated training data in English. |
---|---|
Terjedelem/Fizikai jellemzők: | 77-89 |
ISBN: | 978-963-306-781-9 |