Prospects on solving an optimal control problem with bounded uncertainties on parameters using interval arithmetic

An interval method based on Pontryagin’s Minimum Principle is proposed to enclose the solutions of an optimal control problem with embedded bounded uncertainties. This method is used to compute an enclosure of all optimal trajectories of the problem, as well as open loop and closed loop enclosures m...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Bertin Etienne
Brendel Elliot
Hérissé Bruno
Alexandre dit Sandretto Julien
Chapoutot Alexandre
Dokumentumtípus: Cikk
Megjelent: University of Szeged, Institute of Informatics 2021
Sorozat:Acta cybernetica 25 No. 1
Kulcsszavak:Kibernetika
Tárgyszavak:
doi:10.14232/actacyb.285798

Online Access:http://acta.bibl.u-szeged.hu/73082
Leíró adatok
Tartalmi kivonat:An interval method based on Pontryagin’s Minimum Principle is proposed to enclose the solutions of an optimal control problem with embedded bounded uncertainties. This method is used to compute an enclosure of all optimal trajectories of the problem, as well as open loop and closed loop enclosures meant to validate an optimal guidance algorithm on a concrete system with inaccurate knowledge of the parameters. The differences in geometry of these enclosures are exposed, and showcased on a simple system. These enclosures can guarantee that a given optimal control problem will yield a satisfactory trajectory for any realization of the uncertainties. Contrarily, the probability of failure may not be eliminated and the problem might need to be adjusted.
Terjedelem/Fizikai jellemzők:101-125
ISSN:0324-721X