Precise Morrey regularity of the weak solutions to a kind of quasilinear systems with discontinuous data

We consider the Dirichlet problem for a class of quasilinear elliptic systems in domain with irregular boundary. The principal part satisfies componentwise coercivity condition and the nonlinear terms are Carathéodory maps having Morrey regularity in x and verifying controlled growth conditions with...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Fattorusso Luisa
Softova Lubomira G.
Dokumentumtípus: Folyóirat
Megjelent: 2020
Sorozat:Electronic journal of qualitative theory of differential equations
Kulcsszavak:Differenciálegyenlet
Online Access:http://acta.bibl.u-szeged.hu/69540
Leíró adatok
Tartalmi kivonat:We consider the Dirichlet problem for a class of quasilinear elliptic systems in domain with irregular boundary. The principal part satisfies componentwise coercivity condition and the nonlinear terms are Carathéodory maps having Morrey regularity in x and verifying controlled growth conditions with respect to the other variables. We have obtained boundedness of the weak solution to the problem that permits to apply an iteration procedure in order to find optimal Morrey regularity of its gradient.
ISSN:1417-3875