Multiple small solutions for Schrödinger equations involving the p-Laplacian and positive quasilinear term

We consider the multiplicity of solutions of a class of quasilinear Schrödinger equations involving the p-Laplacian: −∆pu + V(x)|u| p−2u + ∆p(u 2 )u = K(x)f(x, u), x ∈ R N, where ∆pu = div(|∇u| p−2∇u), 1 < p < N, N ≥ 3, V, K belong to C(RN) and f is an odd continuous function without any growt...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Chong Dashuang
Zhang Xian
Huang Chen
Dokumentumtípus: Folyóirat
Megjelent: 2020
Sorozat:Electronic journal of qualitative theory of differential equations
Kulcsszavak:Schrödinger-egyenlet, Differenciálegyenlet
Online Access:http://acta.bibl.u-szeged.hu/69535
Leíró adatok
Tartalmi kivonat:We consider the multiplicity of solutions of a class of quasilinear Schrödinger equations involving the p-Laplacian: −∆pu + V(x)|u| p−2u + ∆p(u 2 )u = K(x)f(x, u), x ∈ R N, where ∆pu = div(|∇u| p−2∇u), 1 < p < N, N ≥ 3, V, K belong to C(RN) and f is an odd continuous function without any growth restrictions at large. Our method is based on a direct modification of the indefinite variational problem to a definite one. Even for the case p = 2, the approach also yields new multiplicity results.
ISSN:1417-3875