Antisymmetric solutions for a class of quasilinear defocusing Schrödinger equations
In this paper we consider the existence of antisymmetric solutions for the quasilinear defocusing Schrödinger equation in H1 (RN): −∆u + k 2 u∆u 2 + V(x)u = g(u), where N ≥ 3, V(x) is a positive continuous potential, g(u) is of subcritical growth and k is a non-negative parameter. By considering a m...
Elmentve itt :
Szerzők: |
Soares Gamboa Janette Zhou Jiazheng |
---|---|
Dokumentumtípus: | Folyóirat |
Megjelent: |
2020
|
Sorozat: | Electronic journal of qualitative theory of differential equations
|
Kulcsszavak: | Schrödinger-egyenlet, Differenciálegyenlet |
doi: | 10.14232/ejqtde.2020.1.16 |
Online Access: | http://acta.bibl.u-szeged.hu/69520 |
Hasonló tételek
-
Positive radial solutions for a class of quasilinear Schrödinger equations in R3
Szerző: Wang Zhongxiang, et al.
Megjelent: (2022) -
Asymptotic behavior of multiple solutions for quasilinear Schrödinger equations
Szerző: Zhang Xian, et al.
Megjelent: (2022) -
Existence of weak solutions for quasilinear Schrödinger equations with a parameter
Szerző: Wei Yunfeng, et al.
Megjelent: (2020) -
Infinitely many solutions to quasilinear Schrödinger equations with critical exponent
Szerző: Wang Li, et al.
Megjelent: (2019) -
Infinitely many solutions for a quasilinear Schrödinger equation with Hardy potentials
Szerző: Shang Tingting, et al.
Megjelent: (2020)