Antisymmetric solutions for a class of quasilinear defocusing Schrödinger equations

In this paper we consider the existence of antisymmetric solutions for the quasilinear defocusing Schrödinger equation in H1 (RN): −∆u + k 2 u∆u 2 + V(x)u = g(u), where N ≥ 3, V(x) is a positive continuous potential, g(u) is of subcritical growth and k is a non-negative parameter. By considering a m...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Soares Gamboa Janette
Zhou Jiazheng
Dokumentumtípus: Folyóirat
Megjelent: 2020
Sorozat:Electronic journal of qualitative theory of differential equations
Kulcsszavak:Schrödinger-egyenlet, Differenciálegyenlet
doi:10.14232/ejqtde.2020.1.16

Online Access:http://acta.bibl.u-szeged.hu/69520
Leíró adatok
Tartalmi kivonat:In this paper we consider the existence of antisymmetric solutions for the quasilinear defocusing Schrödinger equation in H1 (RN): −∆u + k 2 u∆u 2 + V(x)u = g(u), where N ≥ 3, V(x) is a positive continuous potential, g(u) is of subcritical growth and k is a non-negative parameter. By considering a minimizing problem restricted on a partial Nehari manifold, we prove the existence of antisymmetric solutions via a deformation lemma.
ISSN:1417-3875