Antisymmetric solutions for a class of quasilinear defocusing Schrödinger equations
In this paper we consider the existence of antisymmetric solutions for the quasilinear defocusing Schrödinger equation in H1 (RN): −∆u + k 2 u∆u 2 + V(x)u = g(u), where N ≥ 3, V(x) is a positive continuous potential, g(u) is of subcritical growth and k is a non-negative parameter. By considering a m...
Elmentve itt :
Szerzők: | |
---|---|
Dokumentumtípus: | Folyóirat |
Megjelent: |
2020
|
Sorozat: | Electronic journal of qualitative theory of differential equations
|
Kulcsszavak: | Schrödinger-egyenlet, Differenciálegyenlet |
doi: | 10.14232/ejqtde.2020.1.16 |
Online Access: | http://acta.bibl.u-szeged.hu/69520 |
Tartalmi kivonat: | In this paper we consider the existence of antisymmetric solutions for the quasilinear defocusing Schrödinger equation in H1 (RN): −∆u + k 2 u∆u 2 + V(x)u = g(u), where N ≥ 3, V(x) is a positive continuous potential, g(u) is of subcritical growth and k is a non-negative parameter. By considering a minimizing problem restricted on a partial Nehari manifold, we prove the existence of antisymmetric solutions via a deformation lemma. |
---|---|
ISSN: | 1417-3875 |