On the impulsive Dirichlet problem for second-order differential inclusions
Solutions in a given set of an impulsive Dirichlet boundary value problem are investigated for second-order differential inclusions. The method used for obtaining the existence and the localization of a solution is based on the combination of a fixed point index technique developed by ourselves earl...
Elmentve itt :
Szerzők: | |
---|---|
Dokumentumtípus: | Folyóirat |
Megjelent: |
2020
|
Sorozat: | Electronic journal of qualitative theory of differential equations
|
Kulcsszavak: | Differenciálegyenlet, Dirichlet-probléma |
doi: | 10.14232/ejqtde.2020.1.13 |
Online Access: | http://acta.bibl.u-szeged.hu/69517 |
Tartalmi kivonat: | Solutions in a given set of an impulsive Dirichlet boundary value problem are investigated for second-order differential inclusions. The method used for obtaining the existence and the localization of a solution is based on the combination of a fixed point index technique developed by ourselves earlier with a bound sets approach and ScorzaDragoni type result. Since the related bounding (Liapunov-like) functions are strictly localized on the boundaries of parameter sets of candidate solutions, some trajectories are allowed to escape from these sets. |
---|---|
ISSN: | 1417-3875 |