On the divergence of double Fourier-Walsh-Paley series of continuous functions
In this paper we prove that there exists a continuous function on [0, 1)2 , with a certain smoothness, whose double Fourier–Walsh–Paley series diverges by rectangles on a set of positive measure.
Elmentve itt :
Szerző: | |
---|---|
Dokumentumtípus: | Cikk |
Megjelent: |
2020
|
Sorozat: | Acta scientiarum mathematicarum
|
Kulcsszavak: | Matematika |
Tárgyszavak: | |
doi: | 10.14232/actasm-019-319-0 |
Online Access: | http://acta.bibl.u-szeged.hu/69373 |
Tartalmi kivonat: | In this paper we prove that there exists a continuous function on [0, 1)2 , with a certain smoothness, whose double Fourier–Walsh–Paley series diverges by rectangles on a set of positive measure. |
---|---|
Terjedelem/Fizikai jellemzők: | 287-302 |
ISSN: | 2064-8316 |