Planar semilattices and nearlattices with eighty-three subnearlattices

Finite (upper) nearlattices are essentially the same mathematical entities as finite semilattices, finite commutative idempotent semigroups, finite join-enriched meet semilattices, and chopped lattices. We prove that if an nelement nearlattice has at least 83 · 2 n−8 subnearlattices, then it has a p...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerző: Czédli Gábor
Dokumentumtípus: Cikk
Megjelent: 2020
Sorozat:Acta scientiarum mathematicarum
Kulcsszavak:Matematika, Algebra
Tárgyszavak:
doi:10.14232/actasm-019-573-4

Online Access:http://acta.bibl.u-szeged.hu/69366
Leíró adatok
Tartalmi kivonat:Finite (upper) nearlattices are essentially the same mathematical entities as finite semilattices, finite commutative idempotent semigroups, finite join-enriched meet semilattices, and chopped lattices. We prove that if an nelement nearlattice has at least 83 · 2 n−8 subnearlattices, then it has a planar Hasse diagram. For n > 8, this result is sharp.
Terjedelem/Fizikai jellemzők:117-165
ISSN:2064-8316