Hardy type unique continuation properties for abstract Schrödinger equations and applications

In this paper, Hardy’s uncertainty principle and unique continuation properties of Schrödinger equations with operator potentials in Hilbert space-valued L 2 classes are obtained. Since the Hilbert space H and linear operators are arbitrary, by choosing the appropriate spaces and operators we obtain...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerző: Shakhmurov Veli
Dokumentumtípus: Folyóirat
Megjelent: 2019
Sorozat:Electronic journal of qualitative theory of differential equations
Kulcsszavak:Schrödinger egyenletek, Differenciaegyenlet
doi:10.14232/ejqtde.2019.1.97

Online Access:http://acta.bibl.u-szeged.hu/66364
Leíró adatok
Tartalmi kivonat:In this paper, Hardy’s uncertainty principle and unique continuation properties of Schrödinger equations with operator potentials in Hilbert space-valued L 2 classes are obtained. Since the Hilbert space H and linear operators are arbitrary, by choosing the appropriate spaces and operators we obtain numerous classes of Schrödinger type equations and its finite and infinite many systems which occur in a wide variety of physical systems.
Terjedelem/Fizikai jellemzők:1-27
ISSN:1417-3875