Distributional boundary values of generalized Hardy functions in Beurling’s tempered distributions
Let B be a proper open subset in RN and C be an open convex cone in RN. We define a generalization of the spaces of Hardy functions,Gpω∗,A(TB),1≤p <∞,and extended tempered distributions,S′ω, of Beurling’s tempered distributions,S′(ω). We obtain the analytical and topological properties of S′ω and...
Elmentve itt :
Szerző: | |
---|---|
Dokumentumtípus: | Cikk |
Megjelent: |
2019
|
Sorozat: | Acta scientiarum mathematicarum
85 No. 3-4 |
Kulcsszavak: | Általános Hardy függvények, Beurling eloszlások, határérték |
doi: | 10.14232/actasm-018-088-3 |
Online Access: | http://acta.bibl.u-szeged.hu/66335 |
Tartalmi kivonat: | Let B be a proper open subset in RN and C be an open convex cone in RN. We define a generalization of the spaces of Hardy functions,Gpω∗,A(TB),1≤p <∞,and extended tempered distributions,S′ω, of Beurling’s tempered distributions,S′(ω). We obtain the analytical and topological properties of S′ω and show that the functions in Gpω∗,A(TC),1< p≤2,have distributional boundary values in the weak topology of S′(ω)using the analytical propertiesof S′ω. |
---|---|
Terjedelem/Fizikai jellemzők: | 595-611 |
ISSN: | 2064-8316 |