Stable manifolds for non-instantaneous impulsive nonautonomous differential equations
In this paper, we study stable invariant manifolds for a class of nonautonomous non-instantaneous impulsive equations where the homogeneous part has a nonuniform exponential dichotomy. We establish a stable invariant manifold result for sufficiently small perturbations by constructing stable and uns...
Elmentve itt :
Szerzők: | |
---|---|
Dokumentumtípus: | Folyóirat |
Megjelent: |
2019
|
Sorozat: | Electronic journal of qualitative theory of differential equations
|
Kulcsszavak: | Differenciaegyenlet |
doi: | 10.14232/ejqtde.2019.1.82 |
Online Access: | http://acta.bibl.u-szeged.hu/64726 |
LEADER | 01282nas a2200229 i 4500 | ||
---|---|---|---|
001 | acta64726 | ||
005 | 20210916104227.0 | ||
008 | 200127s2019 hu o 0|| zxx d | ||
022 | |a 1417-3875 | ||
024 | 7 | |a 10.14232/ejqtde.2019.1.82 |2 doi | |
040 | |a SZTE Egyetemi Kiadványok Repozitórium |b hun | ||
041 | |a zxx | ||
100 | 1 | |a Mengmeng Li | |
245 | 1 | 0 | |a Stable manifolds for non-instantaneous impulsive nonautonomous differential equations |h [elektronikus dokumentum] / |c Mengmeng Li |
260 | |c 2019 | ||
300 | |a 1-28 | ||
490 | 0 | |a Electronic journal of qualitative theory of differential equations | |
520 | 3 | |a In this paper, we study stable invariant manifolds for a class of nonautonomous non-instantaneous impulsive equations where the homogeneous part has a nonuniform exponential dichotomy. We establish a stable invariant manifold result for sufficiently small perturbations by constructing stable and unstable invariant manifolds and we also show that the stable invariant manifolds are of class C 1 outside the jumping times using the continuous Fiber contraction principle technique. | |
695 | |a Differenciaegyenlet | ||
700 | 0 | 1 | |a Wang JinRong |e aut |
700 | 0 | 1 | |a O’Regan Donal |e aut |
856 | 4 | 0 | |u http://acta.bibl.u-szeged.hu/64726/1/ejqtde_2019_082.pdf |z Dokumentum-elérés |