Stable manifolds for non-instantaneous impulsive nonautonomous differential equations

In this paper, we study stable invariant manifolds for a class of nonautonomous non-instantaneous impulsive equations where the homogeneous part has a nonuniform exponential dichotomy. We establish a stable invariant manifold result for sufficiently small perturbations by constructing stable and uns...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Mengmeng Li
Wang JinRong
O’Regan Donal
Dokumentumtípus: Folyóirat
Megjelent: 2019
Sorozat:Electronic journal of qualitative theory of differential equations
Kulcsszavak:Differenciaegyenlet
doi:10.14232/ejqtde.2019.1.82

Online Access:http://acta.bibl.u-szeged.hu/64726
LEADER 01282nas a2200229 i 4500
001 acta64726
005 20210916104227.0
008 200127s2019 hu o 0|| zxx d
022 |a 1417-3875 
024 7 |a 10.14232/ejqtde.2019.1.82  |2 doi 
040 |a SZTE Egyetemi Kiadványok Repozitórium  |b hun 
041 |a zxx 
100 1 |a Mengmeng Li 
245 1 0 |a Stable manifolds for non-instantaneous impulsive nonautonomous differential equations  |h [elektronikus dokumentum] /  |c  Mengmeng Li 
260 |c 2019 
300 |a 1-28 
490 0 |a Electronic journal of qualitative theory of differential equations 
520 3 |a In this paper, we study stable invariant manifolds for a class of nonautonomous non-instantaneous impulsive equations where the homogeneous part has a nonuniform exponential dichotomy. We establish a stable invariant manifold result for sufficiently small perturbations by constructing stable and unstable invariant manifolds and we also show that the stable invariant manifolds are of class C 1 outside the jumping times using the continuous Fiber contraction principle technique. 
695 |a Differenciaegyenlet 
700 0 1 |a Wang JinRong  |e aut 
700 0 1 |a O’Regan Donal  |e aut 
856 4 0 |u http://acta.bibl.u-szeged.hu/64726/1/ejqtde_2019_082.pdf  |z Dokumentum-elérés