Stable manifolds for non-instantaneous impulsive nonautonomous differential equations

In this paper, we study stable invariant manifolds for a class of nonautonomous non-instantaneous impulsive equations where the homogeneous part has a nonuniform exponential dichotomy. We establish a stable invariant manifold result for sufficiently small perturbations by constructing stable and uns...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Mengmeng Li
Wang JinRong
O’Regan Donal
Dokumentumtípus: Folyóirat
Megjelent: 2019
Sorozat:Electronic journal of qualitative theory of differential equations
Kulcsszavak:Differenciaegyenlet
doi:10.14232/ejqtde.2019.1.82

Online Access:http://acta.bibl.u-szeged.hu/64726
Leíró adatok
Tartalmi kivonat:In this paper, we study stable invariant manifolds for a class of nonautonomous non-instantaneous impulsive equations where the homogeneous part has a nonuniform exponential dichotomy. We establish a stable invariant manifold result for sufficiently small perturbations by constructing stable and unstable invariant manifolds and we also show that the stable invariant manifolds are of class C 1 outside the jumping times using the continuous Fiber contraction principle technique.
Terjedelem/Fizikai jellemzők:1-28
ISSN:1417-3875