Stable manifolds for non-instantaneous impulsive nonautonomous differential equations
In this paper, we study stable invariant manifolds for a class of nonautonomous non-instantaneous impulsive equations where the homogeneous part has a nonuniform exponential dichotomy. We establish a stable invariant manifold result for sufficiently small perturbations by constructing stable and uns...
Elmentve itt :
Szerzők: | |
---|---|
Dokumentumtípus: | Folyóirat |
Megjelent: |
2019
|
Sorozat: | Electronic journal of qualitative theory of differential equations
|
Kulcsszavak: | Differenciaegyenlet |
doi: | 10.14232/ejqtde.2019.1.82 |
Online Access: | http://acta.bibl.u-szeged.hu/64726 |
Tartalmi kivonat: | In this paper, we study stable invariant manifolds for a class of nonautonomous non-instantaneous impulsive equations where the homogeneous part has a nonuniform exponential dichotomy. We establish a stable invariant manifold result for sufficiently small perturbations by constructing stable and unstable invariant manifolds and we also show that the stable invariant manifolds are of class C 1 outside the jumping times using the continuous Fiber contraction principle technique. |
---|---|
Terjedelem/Fizikai jellemzők: | 1-28 |
ISSN: | 1417-3875 |