Asymptotic behavior of solutions of a Fisher equation with free boundaries and nonlocal term

We study the asymptotic behavior of solutions of a Fisher equation with free boundaries and the nonlocal term (an integral convolution in space). This problem can model the spreading of a biological or chemical species, where free boundaries represent the spreading fronts of the species. We give a d...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Cai Jingjing
Chai Yuan
Li Lizhen
Wu Quanjun
Dokumentumtípus: Folyóirat
Megjelent: 2019
Sorozat:Electronic journal of qualitative theory of differential equations
Kulcsszavak:Fisher-egyenlet, Differenciaegyenlet
doi:10.14232/ejqtde.2019.1.79

Online Access:http://acta.bibl.u-szeged.hu/64723
Leíró adatok
Tartalmi kivonat:We study the asymptotic behavior of solutions of a Fisher equation with free boundaries and the nonlocal term (an integral convolution in space). This problem can model the spreading of a biological or chemical species, where free boundaries represent the spreading fronts of the species. We give a dichotomy result, that is, the solution either converges to 1 locally uniformly in R, or to 0 uniformly in the occupying domain. Moreover, we give the sharp threshold when the initial data u0 = σφ, that is, there exists σ ∗ > 0 such that spreading happens when σ > σ , and vanishing happens when σ ≤ σ
Terjedelem/Fizikai jellemzők:1-18
ISSN:1417-3875