A monotonicity property of the Mittag-Leffler function

Let Fα,β(x) = βEβ(x ) − αEα(x ), where Eα denotes the Mittag– Leffler function. We prove that if α, β ∈ (0, 1], then Fα,β is completely monotonic on (0, ∞) if and only if α ≤ β. This extends a result of T. Simon, who proved in 2015 that Fα,1 is completely monotonic on (0, ∞) if α ∈ (0, 1]. Moreover,...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Alzer Horst
Kwong Man Kam
Dokumentumtípus: Cikk
Megjelent: 2019
Sorozat:Acta scientiarum mathematicarum 85 No. 1-2
Kulcsszavak:Matematika
doi:10.14232/actasm-018-263-5

Online Access:http://acta.bibl.u-szeged.hu/62140
Leíró adatok
Tartalmi kivonat:Let Fα,β(x) = βEβ(x ) − αEα(x ), where Eα denotes the Mittag– Leffler function. We prove that if α, β ∈ (0, 1], then Fα,β is completely monotonic on (0, ∞) if and only if α ≤ β. This extends a result of T. Simon, who proved in 2015 that Fα,1 is completely monotonic on (0, ∞) if α ∈ (0, 1]. Moreover, we apply our monotonicity theorem to obtain some functional inequalities involving Fα,β.
Terjedelem/Fizikai jellemzők:181-187
ISSN:2064-8316