Nonhomogeneous fractional p-Kirchhoff problems involving a critical nonlinearity
This paper is concerned with the existence of solutions for a kind of nonhomogeneous critical p-Kirchhoff type problem driven by an integro-differential operator L p K . In particular, we investigate the equation: M �ZZ R2n |v(x) − v(y)| p |x − y| n+ps dxdy� L p K v(x) = µg(x)|v| q−2 v + |v| p s −2...
Elmentve itt :
Szerzők: | |
---|---|
Dokumentumtípus: | Folyóirat |
Megjelent: |
2019
|
Sorozat: | Electronic journal of qualitative theory of differential equations
|
Kulcsszavak: | Kirchhoff problémák, Differenciálegyenlet |
doi: | 10.14232/ejqtde.2019.1.41 |
Online Access: | http://acta.bibl.u-szeged.hu/62119 |
Tartalmi kivonat: | This paper is concerned with the existence of solutions for a kind of nonhomogeneous critical p-Kirchhoff type problem driven by an integro-differential operator L p K . In particular, we investigate the equation: M �ZZ R2n |v(x) − v(y)| p |x − y| n+ps dxdy� L p K v(x) = µg(x)|v| q−2 v + |v| p s −2 v + µ f(x) in R n where g(x) > 0, and f(x) may change sign, µ > 0 is a real parameter, 0 < s < 1 < p < ∞, dimension n > ps, 1 < q < p < p s , p s = np n−ps is the critical exponent of the fractional Sobolev space W s,p K (Rn ). By exploiting Ekeland’s variational principle, we show the existence of non-trivial solutions. The main feature and difficulty of this paper is the fact that M may be zero and lack of compactness at critical level L p s (Rn Our conclusions improve the related results on this topic. |
---|---|
Terjedelem/Fizikai jellemzők: | 1-15 |
ISSN: | 1417-3875 |