Two solutions for a nonhomogeneous Klein–Gordon–Maxwell system

In this paper, we consider the following nonhomogeneous Klein–Gordon– Maxwell system −∆u + V(x)u − (2ω + φ)φu = f(x, u) + h(x), x ∈ R3 ∆φ = (ω + φ)u 2 , x ∈ R3 where ω > 0 is a constant, the primitive of the nonlinearity f is of 2-superlinear growth at infinity. The nonlinearity considered here i...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerző: Wang Lixia
Dokumentumtípus: Folyóirat
Megjelent: 2019
Sorozat:Electronic journal of qualitative theory of differential equations
Kulcsszavak:Differenciálegyenlet
doi:10.14232/ejqtde.2019.1.40

Online Access:http://acta.bibl.u-szeged.hu/62118
Leíró adatok
Tartalmi kivonat:In this paper, we consider the following nonhomogeneous Klein–Gordon– Maxwell system −∆u + V(x)u − (2ω + φ)φu = f(x, u) + h(x), x ∈ R3 ∆φ = (ω + φ)u 2 , x ∈ R3 where ω > 0 is a constant, the primitive of the nonlinearity f is of 2-superlinear growth at infinity. The nonlinearity considered here is weaker than the local (AR) condition and the (Je) condition of Jeanjean. The existence of two solutions is proved by the Mountain Pass Theorem and Ekeland’s variational principle.
Terjedelem/Fizikai jellemzők:1-12
ISSN:1417-3875