Two solutions for a nonhomogeneous Klein–Gordon–Maxwell system
In this paper, we consider the following nonhomogeneous Klein–Gordon– Maxwell system −∆u + V(x)u − (2ω + φ)φu = f(x, u) + h(x), x ∈ R3 ∆φ = (ω + φ)u 2 , x ∈ R3 where ω > 0 is a constant, the primitive of the nonlinearity f is of 2-superlinear growth at infinity. The nonlinearity considered here i...
Elmentve itt :
Szerző: | |
---|---|
Dokumentumtípus: | Folyóirat |
Megjelent: |
2019
|
Sorozat: | Electronic journal of qualitative theory of differential equations
|
Kulcsszavak: | Differenciálegyenlet |
doi: | 10.14232/ejqtde.2019.1.40 |
Online Access: | http://acta.bibl.u-szeged.hu/62118 |
Tartalmi kivonat: | In this paper, we consider the following nonhomogeneous Klein–Gordon– Maxwell system −∆u + V(x)u − (2ω + φ)φu = f(x, u) + h(x), x ∈ R3 ∆φ = (ω + φ)u 2 , x ∈ R3 where ω > 0 is a constant, the primitive of the nonlinearity f is of 2-superlinear growth at infinity. The nonlinearity considered here is weaker than the local (AR) condition and the (Je) condition of Jeanjean. The existence of two solutions is proved by the Mountain Pass Theorem and Ekeland’s variational principle. |
---|---|
Terjedelem/Fizikai jellemzők: | 1-12 |
ISSN: | 1417-3875 |