Continuity of solutions to the G-Laplace equation involving measures
We establish local continuity of solutions to the G-Laplace equation involving measures, i.e., −div � g(|∇u|) |∇u| ∇u where µ is a nonnegative Radon measure satisfying µ(Br(x0)) ≤ Crm for any ball Br(x0) ⊂⊂ Ω with r ≤ 1 and m > n − 1 − δ ≥ 0. The function g is supposed to be nonnegative and C 1 -...
Elmentve itt :
Szerzők: | |
---|---|
Dokumentumtípus: | Folyóirat |
Megjelent: |
2019
|
Sorozat: | Electronic journal of qualitative theory of differential equations
|
Kulcsszavak: | Elliptikus differenciáloperátor, Differenciálegyenlet |
doi: | 10.14232/ejqtde.2019.1.39 |
Online Access: | http://acta.bibl.u-szeged.hu/62117 |
LEADER | 01318nas a2200217 i 4500 | ||
---|---|---|---|
001 | acta62117 | ||
005 | 20210916104238.0 | ||
008 | 190927s2019 hu o 0|| zxx d | ||
022 | |a 1417-3875 | ||
024 | 7 | |a 10.14232/ejqtde.2019.1.39 |2 doi | |
040 | |a SZTE Egyetemi Kiadványok Repozitórium |b hun | ||
041 | |a zxx | ||
100 | 1 | |a Zhang Yan | |
245 | 1 | 0 | |a Continuity of solutions to the G-Laplace equation involving measures |h [elektronikus dokumentum] / |c Zhang Yan |
260 | |c 2019 | ||
300 | |a 1-10 | ||
490 | 0 | |a Electronic journal of qualitative theory of differential equations | |
520 | 3 | |a We establish local continuity of solutions to the G-Laplace equation involving measures, i.e., −div � g(|∇u|) |∇u| ∇u where µ is a nonnegative Radon measure satisfying µ(Br(x0)) ≤ Crm for any ball Br(x0) ⊂⊂ Ω with r ≤ 1 and m > n − 1 − δ ≥ 0. The function g is supposed to be nonnegative and C 1 -continuous on [0, +∞), satisfying g(0) = 0 and tg0 (t) g(t) ≤ g0, ∀t > 0 with positive constants δ and g0, which generalizes the structural conditions of Ladyzhenskaya–Ural’tseva for an elliptic operator. | |
695 | |a Elliptikus differenciáloperátor, Differenciálegyenlet | ||
700 | 0 | 1 | |a Zheng Jun |e aut |
856 | 4 | 0 | |u http://acta.bibl.u-szeged.hu/62117/1/ejqtde_2019_039.pdf |z Dokumentum-elérés |