Continuity of solutions to the G-Laplace equation involving measures

We establish local continuity of solutions to the G-Laplace equation involving measures, i.e., −div � g(|∇u|) |∇u| ∇u where µ is a nonnegative Radon measure satisfying µ(Br(x0)) ≤ Crm for any ball Br(x0) ⊂⊂ Ω with r ≤ 1 and m > n − 1 − δ ≥ 0. The function g is supposed to be nonnegative and C 1 -...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Zhang Yan
Zheng Jun
Dokumentumtípus: Folyóirat
Megjelent: 2019
Sorozat:Electronic journal of qualitative theory of differential equations
Kulcsszavak:Elliptikus differenciáloperátor, Differenciálegyenlet
doi:10.14232/ejqtde.2019.1.39

Online Access:http://acta.bibl.u-szeged.hu/62117
LEADER 01318nas a2200217 i 4500
001 acta62117
005 20210916104238.0
008 190927s2019 hu o 0|| zxx d
022 |a 1417-3875 
024 7 |a 10.14232/ejqtde.2019.1.39  |2 doi 
040 |a SZTE Egyetemi Kiadványok Repozitórium  |b hun 
041 |a zxx 
100 1 |a Zhang Yan 
245 1 0 |a Continuity of solutions to the G-Laplace equation involving measures  |h [elektronikus dokumentum] /  |c  Zhang Yan 
260 |c 2019 
300 |a 1-10 
490 0 |a Electronic journal of qualitative theory of differential equations 
520 3 |a We establish local continuity of solutions to the G-Laplace equation involving measures, i.e., −div � g(|∇u|) |∇u| ∇u where µ is a nonnegative Radon measure satisfying µ(Br(x0)) ≤ Crm for any ball Br(x0) ⊂⊂ Ω with r ≤ 1 and m > n − 1 − δ ≥ 0. The function g is supposed to be nonnegative and C 1 -continuous on [0, +∞), satisfying g(0) = 0 and tg0 (t) g(t) ≤ g0, ∀t > 0 with positive constants δ and g0, which generalizes the structural conditions of Ladyzhenskaya–Ural’tseva for an elliptic operator. 
695 |a Elliptikus differenciáloperátor, Differenciálegyenlet 
700 0 1 |a Zheng Jun  |e aut 
856 4 0 |u http://acta.bibl.u-szeged.hu/62117/1/ejqtde_2019_039.pdf  |z Dokumentum-elérés