Continuity of solutions to the G-Laplace equation involving measures

We establish local continuity of solutions to the G-Laplace equation involving measures, i.e., −div � g(|∇u|) |∇u| ∇u where µ is a nonnegative Radon measure satisfying µ(Br(x0)) ≤ Crm for any ball Br(x0) ⊂⊂ Ω with r ≤ 1 and m > n − 1 − δ ≥ 0. The function g is supposed to be nonnegative and C 1 -...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Zhang Yan
Zheng Jun
Dokumentumtípus: Folyóirat
Megjelent: 2019
Sorozat:Electronic journal of qualitative theory of differential equations
Kulcsszavak:Elliptikus differenciáloperátor, Differenciálegyenlet
doi:10.14232/ejqtde.2019.1.39

Online Access:http://acta.bibl.u-szeged.hu/62117
Leíró adatok
Tartalmi kivonat:We establish local continuity of solutions to the G-Laplace equation involving measures, i.e., −div � g(|∇u|) |∇u| ∇u where µ is a nonnegative Radon measure satisfying µ(Br(x0)) ≤ Crm for any ball Br(x0) ⊂⊂ Ω with r ≤ 1 and m > n − 1 − δ ≥ 0. The function g is supposed to be nonnegative and C 1 -continuous on [0, +∞), satisfying g(0) = 0 and tg0 (t) g(t) ≤ g0, ∀t > 0 with positive constants δ and g0, which generalizes the structural conditions of Ladyzhenskaya–Ural’tseva for an elliptic operator.
Terjedelem/Fizikai jellemzők:1-10
ISSN:1417-3875