Remark on local boundary regularity condition of a suitable weak solution to the 3D MHD equations
We study a local regularity condition for a suitable weak solution of the magnetohydrodynamics equations in a half space R3 +. More precisely, we prove that a suitable weak solution is Hölder continuous near boundary provided that the quantity lim sup r→0 1 r kukL 2(B x,r) L∞(t−r 2,t) is sufficientl...
Elmentve itt :
Szerző: | |
---|---|
Dokumentumtípus: | Folyóirat |
Megjelent: |
2019
|
Sorozat: | Electronic journal of qualitative theory of differential equations
|
Kulcsszavak: | Differenciálegyenlet |
doi: | 10.14232/ejqtde.2019.1.32 |
Online Access: | http://acta.bibl.u-szeged.hu/62110 |
Tartalmi kivonat: | We study a local regularity condition for a suitable weak solution of the magnetohydrodynamics equations in a half space R3 +. More precisely, we prove that a suitable weak solution is Hölder continuous near boundary provided that the quantity lim sup r→0 1 r kukL 2(B x,r) L∞(t−r 2,t) is sufficiently small near the boundary. Furthermore, we briefly add some global regularity criteria of weak solutions to this system. |
---|---|
Terjedelem/Fizikai jellemzők: | 1-11 |
ISSN: | 1417-3875 |