PoS-tagging and lemmatization with a deep recurrent neural network
Neural networks have been shown to successfully solve many natural language processing tasks previously tackled by rule-based and statistical approaches. We present a deep recurrent network with long short-term memory, identical to engines used in machine translation, to solve the problem of joint P...
Elmentve itt :
Szerző: | |
---|---|
Testületi szerző: | |
Dokumentumtípus: | Könyv része |
Megjelent: |
2019
|
Sorozat: | Magyar Számítógépes Nyelvészeti Konferencia
15 |
Kulcsszavak: | Nyelvészet - számítógép alkalmazása |
Online Access: | http://acta.bibl.u-szeged.hu/59087 |
Tartalmi kivonat: | Neural networks have been shown to successfully solve many natural language processing tasks previously tackled by rule-based and statistical approaches. We present a deep recurrent network with long short-term memory, identical to engines used in machine translation, to solve the problem of joint PoS-tagging and lemmatization in Hungarian and German. Our model achieves comparable or superior results to a state-of-the-art statistical PoS tagger. We are able to enhance the Hungarian model’s performance, as measured on a manually annotated sample unrelated to the initial training corpus, through an additional synthesized dataset. |
---|---|
Terjedelem/Fizikai jellemzők: | 215-224 |
ISBN: | 978-963-315-393-2 |