Comparison of distributed language models on medium-resourced languages

word2vec and GloVe are the two most successful open-source tools that compute distributed language models from gigaword corpora. word2vec implements the neural network style architectures skip-gram and cbow, learning parameters using each word as a training sample, while GloVe factorizes the cooccur...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerző: Makrai Márton
Testületi szerző: Magyar Számítógépes Nyelvészeti Konferencia (11.) (2015) (Szeged)
Dokumentumtípus: Könyv része
Megjelent: 2015
Sorozat:Magyar Számítógépes Nyelvészeti Konferencia 11
Kulcsszavak:Nyelvészet - számítógép alkalmazása
Online Access:http://acta.bibl.u-szeged.hu/58918
Leíró adatok
Tartalmi kivonat:word2vec and GloVe are the two most successful open-source tools that compute distributed language models from gigaword corpora. word2vec implements the neural network style architectures skip-gram and cbow, learning parameters using each word as a training sample, while GloVe factorizes the cooccurrence-matrix (or more precisely a matrix of conditional probabilities) as a whole. In the present work, we compare the two systems on two tasks: a Hungarian equivalent of a popular word analogy task and word translation between European languages including medium-resourced ones e.g. Hungarian, Lithuanian and Slovenian.
Terjedelem/Fizikai jellemzők:22-33
ISBN:978-963-306-359-0