Positive kernels, fixed points, and integral equations

There is substantial literature going back to 1965 showing boundedness properties of solutions of the integro-differential equation x 0 (t) = − Z t 0 A(t − s)h(s, x(s))ds when A is a positive kernel and h is a continuous function using Z T 0 h(t, x(t)) Z t 0 A(t − s)h(s, x(s))dsdt ≥ 0. In that study...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Burton Theodore Allen
Purnaras Ioannis K.
Dokumentumtípus: Folyóirat
Megjelent: 2018
Sorozat:Electronic journal of qualitative theory of differential equations
Kulcsszavak:Integrálegyenlet
doi:10.14232/ejqtde.2018.1.44

Online Access:http://acta.bibl.u-szeged.hu/58141
Leíró adatok
Tartalmi kivonat:There is substantial literature going back to 1965 showing boundedness properties of solutions of the integro-differential equation x 0 (t) = − Z t 0 A(t − s)h(s, x(s))ds when A is a positive kernel and h is a continuous function using Z T 0 h(t, x(t)) Z t 0 A(t − s)h(s, x(s))dsdt ≥ 0. In that study there emerges the pair: Integro-differential equation and Supremum norm. In this paper we study qualitative properties of solutions of integral equations using the same inequality and obtain results on L p solutions. That is, there occurs the pair: Integral equations and L p norm. The paper also offers many examples showing how to use the L p idea effectively.
Terjedelem/Fizikai jellemzők:1-21
ISSN:1417-3875