Wave equation in higher dimensions - periodic solutions
We discuss the solvability of the periodic-Dirichlet problem for the wave equation with forced vibrations xtt(t, y) − ∆x(t, y) + l(t, y, x(t, y)) = 0 in higher dimensions with sides length being irrational numbers and superlinear nonlinearity. To this effect we derive a new dual variational method....
Elmentve itt :
Szerzők: | |
---|---|
Dokumentumtípus: | Folyóirat |
Megjelent: |
2018
|
Sorozat: | Electronic journal of qualitative theory of differential equations
|
Kulcsszavak: | Differenciálegyenlet |
doi: | 10.14232/ejqtde.2018.1.103 |
Online Access: | http://acta.bibl.u-szeged.hu/58118 |
LEADER | 01058nas a2200217 i 4500 | ||
---|---|---|---|
001 | acta58118 | ||
005 | 20200729122903.0 | ||
008 | 190530s2018 hu o 0|| zxx d | ||
022 | |a 1417-3875 | ||
024 | 7 | |a 10.14232/ejqtde.2018.1.103 |2 doi | |
040 | |a SZTE Egyetemi Kiadványok Repozitórium |b hun | ||
041 | |a zxx | ||
100 | 1 | |a Nowakowski Andrzej | |
245 | 1 | 0 | |a Wave equation in higher dimensions - periodic solutions |h [elektronikus dokumentum] / |c Nowakowski Andrzej |
260 | |c 2018 | ||
300 | |a 1-31 | ||
490 | 0 | |a Electronic journal of qualitative theory of differential equations | |
520 | 3 | |a We discuss the solvability of the periodic-Dirichlet problem for the wave equation with forced vibrations xtt(t, y) − ∆x(t, y) + l(t, y, x(t, y)) = 0 in higher dimensions with sides length being irrational numbers and superlinear nonlinearity. To this effect we derive a new dual variational method. | |
695 | |a Differenciálegyenlet | ||
700 | 0 | 1 | |a Rogowski Andrzej |e aut |
856 | 4 | 0 | |u http://acta.bibl.u-szeged.hu/58118/1/ejqtde_2018_103.pdf |z Dokumentum-elérés |