Wave equation in higher dimensions - periodic solutions

We discuss the solvability of the periodic-Dirichlet problem for the wave equation with forced vibrations xtt(t, y) − ∆x(t, y) + l(t, y, x(t, y)) = 0 in higher dimensions with sides length being irrational numbers and superlinear nonlinearity. To this effect we derive a new dual variational method....

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Nowakowski Andrzej
Rogowski Andrzej
Dokumentumtípus: Folyóirat
Megjelent: 2018
Sorozat:Electronic journal of qualitative theory of differential equations
Kulcsszavak:Differenciálegyenlet
doi:10.14232/ejqtde.2018.1.103

Online Access:http://acta.bibl.u-szeged.hu/58118
LEADER 01058nas a2200217 i 4500
001 acta58118
005 20200729122903.0
008 190530s2018 hu o 0|| zxx d
022 |a 1417-3875 
024 7 |a 10.14232/ejqtde.2018.1.103  |2 doi 
040 |a SZTE Egyetemi Kiadványok Repozitórium  |b hun 
041 |a zxx 
100 1 |a Nowakowski Andrzej 
245 1 0 |a Wave equation in higher dimensions - periodic solutions  |h [elektronikus dokumentum] /  |c  Nowakowski Andrzej 
260 |c 2018 
300 |a 1-31 
490 0 |a Electronic journal of qualitative theory of differential equations 
520 3 |a We discuss the solvability of the periodic-Dirichlet problem for the wave equation with forced vibrations xtt(t, y) − ∆x(t, y) + l(t, y, x(t, y)) = 0 in higher dimensions with sides length being irrational numbers and superlinear nonlinearity. To this effect we derive a new dual variational method. 
695 |a Differenciálegyenlet 
700 0 1 |a Rogowski Andrzej  |e aut 
856 4 0 |u http://acta.bibl.u-szeged.hu/58118/1/ejqtde_2018_103.pdf  |z Dokumentum-elérés