Wave equation in higher dimensions - periodic solutions
We discuss the solvability of the periodic-Dirichlet problem for the wave equation with forced vibrations xtt(t, y) − ∆x(t, y) + l(t, y, x(t, y)) = 0 in higher dimensions with sides length being irrational numbers and superlinear nonlinearity. To this effect we derive a new dual variational method....
Elmentve itt :
Szerzők: | |
---|---|
Dokumentumtípus: | Folyóirat |
Megjelent: |
2018
|
Sorozat: | Electronic journal of qualitative theory of differential equations
|
Kulcsszavak: | Differenciálegyenlet |
doi: | 10.14232/ejqtde.2018.1.103 |
Online Access: | http://acta.bibl.u-szeged.hu/58118 |
Tartalmi kivonat: | We discuss the solvability of the periodic-Dirichlet problem for the wave equation with forced vibrations xtt(t, y) − ∆x(t, y) + l(t, y, x(t, y)) = 0 in higher dimensions with sides length being irrational numbers and superlinear nonlinearity. To this effect we derive a new dual variational method. |
---|---|
Terjedelem/Fizikai jellemzők: | 1-31 |
ISSN: | 1417-3875 |