Wave equation in higher dimensions - periodic solutions

We discuss the solvability of the periodic-Dirichlet problem for the wave equation with forced vibrations xtt(t, y) − ∆x(t, y) + l(t, y, x(t, y)) = 0 in higher dimensions with sides length being irrational numbers and superlinear nonlinearity. To this effect we derive a new dual variational method....

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Nowakowski Andrzej
Rogowski Andrzej
Dokumentumtípus: Folyóirat
Megjelent: 2018
Sorozat:Electronic journal of qualitative theory of differential equations
Kulcsszavak:Differenciálegyenlet
doi:10.14232/ejqtde.2018.1.103

Online Access:http://acta.bibl.u-szeged.hu/58118
Leíró adatok
Tartalmi kivonat:We discuss the solvability of the periodic-Dirichlet problem for the wave equation with forced vibrations xtt(t, y) − ∆x(t, y) + l(t, y, x(t, y)) = 0 in higher dimensions with sides length being irrational numbers and superlinear nonlinearity. To this effect we derive a new dual variational method.
Terjedelem/Fizikai jellemzők:1-31
ISSN:1417-3875