A note on the uniqueness of strong solution to the incompressible Navier-Stokes equations with damping
We study the Cauchy problem of the 3D incompressible Navier–Stokes equations with nonlinear damping term α|u| β−1u (α > 0 and β ≥ 1). In [J. Math. Anal. Appl. 377(2011), 414–419], Zhang et al. obtained global strong solution for β > 3 and the solution is unique provided that 3 < β ≤ 5. In t...
Elmentve itt :
Szerző: | |
---|---|
Dokumentumtípus: | Folyóirat |
Megjelent: |
2019
|
Sorozat: | Electronic journal of qualitative theory of differential equations
|
Kulcsszavak: | Navier-Stokes egyenlet |
doi: | 10.14232/ejqtde.2019.1.15 |
Online Access: | http://acta.bibl.u-szeged.hu/58102 |
Tartalmi kivonat: | We study the Cauchy problem of the 3D incompressible Navier–Stokes equations with nonlinear damping term α|u| β−1u (α > 0 and β ≥ 1). In [J. Math. Anal. Appl. 377(2011), 414–419], Zhang et al. obtained global strong solution for β > 3 and the solution is unique provided that 3 < β ≤ 5. In this note, we aim at deriving the uniqueness of global strong solution for any β > 3. |
---|---|
Terjedelem/Fizikai jellemzők: | 1-4 |
ISSN: | 1417-3875 |