New multiple positive solutions for elliptic equations with singularity and critical growth
In this note, the existence of multiple positive solutions is established for a semilinear elliptic equation −∆u = λ u γ + u 2 ∗−1 , x ∈ Ω, u = 0, x ∈ ∂Ω, where Ω is a smooth bounded domain in RN (N ≥ 3), 2∗ = 2N N−2 , γ ∈ (0, 1) and λ > 0 is a real parameter. We show by the variational methods a...
Elmentve itt :
Szerzők: | |
---|---|
Dokumentumtípus: | Folyóirat |
Megjelent: |
2019
|
Sorozat: | Electronic journal of qualitative theory of differential equations
|
Kulcsszavak: | Differenciálegyenlet - elliptikus |
doi: | 10.14232/ejqtde.2019.1.20 |
Online Access: | http://acta.bibl.u-szeged.hu/58097 |
Tartalmi kivonat: | In this note, the existence of multiple positive solutions is established for a semilinear elliptic equation −∆u = λ u γ + u 2 ∗−1 , x ∈ Ω, u = 0, x ∈ ∂Ω, where Ω is a smooth bounded domain in RN (N ≥ 3), 2∗ = 2N N−2 , γ ∈ (0, 1) and λ > 0 is a real parameter. We show by the variational methods and perturbation functional that the problem has at least two positive solutions w0(x) and w1(x) with w0(x) < w1(x) in Ω. |
---|---|
Terjedelem/Fizikai jellemzők: | 1-14 |
ISSN: | 1417-3875 |