New multiple positive solutions for elliptic equations with singularity and critical growth

In this note, the existence of multiple positive solutions is established for a semilinear elliptic equation −∆u = λ u γ + u 2 ∗−1 , x ∈ Ω, u = 0, x ∈ ∂Ω, where Ω is a smooth bounded domain in RN (N ≥ 3), 2∗ = 2N N−2 , γ ∈ (0, 1) and λ > 0 is a real parameter. We show by the variational methods a...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Suo Hong-Min
Lei Chun-Yu
Liao Jia-Feng
Dokumentumtípus: Folyóirat
Megjelent: 2019
Sorozat:Electronic journal of qualitative theory of differential equations
Kulcsszavak:Differenciálegyenlet - elliptikus
doi:10.14232/ejqtde.2019.1.20

Online Access:http://acta.bibl.u-szeged.hu/58097
Leíró adatok
Tartalmi kivonat:In this note, the existence of multiple positive solutions is established for a semilinear elliptic equation −∆u = λ u γ + u 2 ∗−1 , x ∈ Ω, u = 0, x ∈ ∂Ω, where Ω is a smooth bounded domain in RN (N ≥ 3), 2∗ = 2N N−2 , γ ∈ (0, 1) and λ > 0 is a real parameter. We show by the variational methods and perturbation functional that the problem has at least two positive solutions w0(x) and w1(x) with w0(x) < w1(x) in Ω.
Terjedelem/Fizikai jellemzők:1-14
ISSN:1417-3875