A state-dependent delay equation with chaotic solutions
We exhibit a scalar-valued state-dependent delay differential equation x 0 (t) = f(x(t − d(xt))) that has a chaotic solution. This equation has continuous (semi-strictly) monotonic negative feedback, and the quantity t − d(xt) is strictly increasing along solutions.
Elmentve itt :
Szerzők: | |
---|---|
Dokumentumtípus: | Folyóirat |
Megjelent: |
2019
|
Sorozat: | Electronic journal of qualitative theory of differential equations
|
Kulcsszavak: | Differenciálegyenlet - késleltetett |
doi: | 10.14232/ejqtde.2019.1.22 |
Online Access: | http://acta.bibl.u-szeged.hu/58095 |
Tartalmi kivonat: | We exhibit a scalar-valued state-dependent delay differential equation x 0 (t) = f(x(t − d(xt))) that has a chaotic solution. This equation has continuous (semi-strictly) monotonic negative feedback, and the quantity t − d(xt) is strictly increasing along solutions. |
---|---|
Terjedelem/Fizikai jellemzők: | 1-20 |
ISSN: | 1417-3875 |