Property (UWΠ) and localized SVEP

Property (UWΠ) for a bounded linear operator T ∈ L(X) on a Banach space X is a variant of Browder’s theorem, and means that the points λ of the approximate point spectrum for which λI − T is upper semi-Weyl are exactly the spectral points λ such that λI − T is Drazin invertible. In this paper we inv...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Aiena Pietro
Kachad Mohammed
Dokumentumtípus: Cikk
Megjelent: 2018
Sorozat:Acta scientiarum mathematicarum 84 No. 3-4
Kulcsszavak:Matematika
doi:10.14232/actasm-016-303-5

Online Access:http://acta.bibl.u-szeged.hu/56928
LEADER 01234nab a2200217 i 4500
001 acta56928
005 20210325154459.0
008 190130s2018 hu o 0|| zxx d
022 |a 0001-6969 
024 7 |a 10.14232/actasm-016-303-5  |2 doi 
040 |a SZTE Egyetemi Kiadványok Repozitórium  |b hun 
041 |a zxx 
100 1 |a Aiena Pietro 
245 1 0 |a Property (UWΠ) and localized SVEP  |h [elektronikus dokumentum] /  |c  Aiena Pietro 
260 |c 2018 
300 |a 555-571 
490 0 |a Acta scientiarum mathematicarum  |v 84 No. 3-4 
520 3 |a Property (UWΠ) for a bounded linear operator T ∈ L(X) on a Banach space X is a variant of Browder’s theorem, and means that the points λ of the approximate point spectrum for which λI − T is upper semi-Weyl are exactly the spectral points λ such that λI − T is Drazin invertible. In this paper we investigate this property, and we give several characterizations of it by using typical tools from local spectral theory. We also relate this property with some other variants of Browder’s theorem (or Weyl’s theorem). 
695 |a Matematika 
700 0 1 |a Kachad Mohammed  |e aut 
856 4 0 |u http://acta.bibl.u-szeged.hu/56928/1/math_084_numb_003-004_555-571.pdf  |z Dokumentum-elérés