Property (UWΠ) and localized SVEP

Property (UWΠ) for a bounded linear operator T ∈ L(X) on a Banach space X is a variant of Browder’s theorem, and means that the points λ of the approximate point spectrum for which λI − T is upper semi-Weyl are exactly the spectral points λ such that λI − T is Drazin invertible. In this paper we inv...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Aiena Pietro
Kachad Mohammed
Dokumentumtípus: Cikk
Megjelent: 2018
Sorozat:Acta scientiarum mathematicarum 84 No. 3-4
Kulcsszavak:Matematika
doi:10.14232/actasm-016-303-5

Online Access:http://acta.bibl.u-szeged.hu/56928
Leíró adatok
Tartalmi kivonat:Property (UWΠ) for a bounded linear operator T ∈ L(X) on a Banach space X is a variant of Browder’s theorem, and means that the points λ of the approximate point spectrum for which λI − T is upper semi-Weyl are exactly the spectral points λ such that λI − T is Drazin invertible. In this paper we investigate this property, and we give several characterizations of it by using typical tools from local spectral theory. We also relate this property with some other variants of Browder’s theorem (or Weyl’s theorem).
Terjedelem/Fizikai jellemzők:555-571
ISSN:0001-6969