Classification and evolution of bifurcation curves for a one-dimensional Neumann-Robin problem and its applications
We study the classification and evolution of bifurcation curves of positive solutions for the one-dimensional Neumann–Robin boundary value problem u 00(x) + λ f(u(x)) = 0, 0 < x < 1, u 0 (0) = 0 and u 0 (1) + αu(1) = 0, where λ > 0 is a bifurcation parameter, α > 0 is an evolution parame...
Elmentve itt :
Szerzők: | |
---|---|
Dokumentumtípus: | Folyóirat |
Megjelent: |
2018
|
Sorozat: | Electronic journal of qualitative theory of differential equations
|
Kulcsszavak: | Neumann-Robin probléma, Bifurkáció |
doi: | 10.14232/ejqtde.2018.1.85 |
Online Access: | http://acta.bibl.u-szeged.hu/56897 |
Tartalmi kivonat: | We study the classification and evolution of bifurcation curves of positive solutions for the one-dimensional Neumann–Robin boundary value problem u 00(x) + λ f(u(x)) = 0, 0 < x < 1, u 0 (0) = 0 and u 0 (1) + αu(1) = 0, where λ > 0 is a bifurcation parameter, α > 0 is an evolution parameter, and nonlinearity f satisfies f(0) ≥ 0 and f(u) > 0 for u > 0. We obtain the multiplicity of positive solutions for α > 0 and λ > 0. Applications are given. |
---|---|
Terjedelem/Fizikai jellemzők: | 1-30 |
ISSN: | 1417-3875 |