Classification and evolution of bifurcation curves for a one-dimensional Neumann-Robin problem and its applications

We study the classification and evolution of bifurcation curves of positive solutions for the one-dimensional Neumann–Robin boundary value problem u 00(x) + λ f(u(x)) = 0, 0 < x < 1, u 0 (0) = 0 and u 0 (1) + αu(1) = 0, where λ > 0 is a bifurcation parameter, α > 0 is an evolution parame...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Tsai Chi-Chao
Wang Shin-Hwa
Huang Shao-Yuan
Dokumentumtípus: Folyóirat
Megjelent: 2018
Sorozat:Electronic journal of qualitative theory of differential equations
Kulcsszavak:Neumann-Robin probléma, Bifurkáció
doi:10.14232/ejqtde.2018.1.85

Online Access:http://acta.bibl.u-szeged.hu/56897
Leíró adatok
Tartalmi kivonat:We study the classification and evolution of bifurcation curves of positive solutions for the one-dimensional Neumann–Robin boundary value problem u 00(x) + λ f(u(x)) = 0, 0 < x < 1, u 0 (0) = 0 and u 0 (1) + αu(1) = 0, where λ > 0 is a bifurcation parameter, α > 0 is an evolution parameter, and nonlinearity f satisfies f(0) ≥ 0 and f(u) > 0 for u > 0. We obtain the multiplicity of positive solutions for α > 0 and λ > 0. Applications are given.
Terjedelem/Fizikai jellemzők:1-30
ISSN:1417-3875