Structure of abelian parts of C∗-algebras and its preservers

The context poset of Abelian C -subalgebras of a given C -algebra is an operator theoretic invariant of growing interest. We review recent results describing order isomorphisms between context posets in terms of Jordan type maps (linear or not) between important types of operator algebras. We discus...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerző: Hamhalter Jan
Dokumentumtípus: Cikk
Megjelent: 2018
Sorozat:Acta scientiarum mathematicarum 84 No. 1-2
Kulcsszavak:Algebra
Online Access:http://acta.bibl.u-szeged.hu/55814
Leíró adatok
Tartalmi kivonat:The context poset of Abelian C -subalgebras of a given C -algebra is an operator theoretic invariant of growing interest. We review recent results describing order isomorphisms between context posets in terms of Jordan type maps (linear or not) between important types of operator algebras. We discuss the important role of the generalized Gleason theorem on linearity of maps preserving linear combinations of commuting elements for studying symmetries of context posets. Related results on maps multiplicative with respect to commuting elements are investigated.
Terjedelem/Fizikai jellemzők:263-275
ISSN:0001-6969