Linear maps that preserve semi-Fredholm operators acting on Banach spaces
We consider the linear maps ϕ: B(X) → B(Y ) that preserve the semi-Fredholm operators in both directions or the essential spectrum of an operator, where B(X) is the algebra of all bounded linear operators on an infinite-dimensional Banach space X. We describe some known results in the Hilbert space...
Elmentve itt :
Szerzők: | |
---|---|
Dokumentumtípus: | Cikk |
Megjelent: |
2018
|
Sorozat: | Acta scientiarum mathematicarum
84 No. 1-2 |
Kulcsszavak: | Banach tér |
Online Access: | http://acta.bibl.u-szeged.hu/55807 |
Tartalmi kivonat: | We consider the linear maps ϕ: B(X) → B(Y ) that preserve the semi-Fredholm operators in both directions or the essential spectrum of an operator, where B(X) is the algebra of all bounded linear operators on an infinite-dimensional Banach space X. We describe some known results in the Hilbert space case, provide some basic results and examples in the general case, and state several open problems. |
---|---|
Terjedelem/Fizikai jellemzők: | 137-149 |
ISSN: | 0001-6969 |