Additive maps preserving the scrambling index are bijective
We prove that additive transformations on matrices over the binary Boolean semiring that preserve the scrambling index are automatically bijective. As a consequence we characterize such maps for matrices over an arbitrary antinegative semiring with identity and without zero-divisors.
Elmentve itt :
Szerzők: | |
---|---|
Dokumentumtípus: | Cikk |
Megjelent: |
2018
|
Sorozat: | Acta scientiarum mathematicarum
84 No. 1-2 |
Kulcsszavak: | Mátrixelmélet - transzformáció, Leképezés |
Online Access: | http://acta.bibl.u-szeged.hu/55801 |
Tartalmi kivonat: | We prove that additive transformations on matrices over the binary Boolean semiring that preserve the scrambling index are automatically bijective. As a consequence we characterize such maps for matrices over an arbitrary antinegative semiring with identity and without zero-divisors. |
---|---|
Terjedelem/Fizikai jellemzők: | 18-38 |
ISSN: | 0001-6969 |