Additive maps preserving the scrambling index are bijective

We prove that additive transformations on matrices over the binary Boolean semiring that preserve the scrambling index are automatically bijective. As a consequence we characterize such maps for matrices over an arbitrary antinegative semiring with identity and without zero-divisors.

Elmentve itt :
Bibliográfiai részletek
Szerzők: Guterman A. E.
Maksaev A. M.
Dokumentumtípus: Cikk
Megjelent: 2018
Sorozat:Acta scientiarum mathematicarum 84 No. 1-2
Kulcsszavak:Mátrixelmélet - transzformáció, Leképezés
Online Access:http://acta.bibl.u-szeged.hu/55801
Leíró adatok
Tartalmi kivonat:We prove that additive transformations on matrices over the binary Boolean semiring that preserve the scrambling index are automatically bijective. As a consequence we characterize such maps for matrices over an arbitrary antinegative semiring with identity and without zero-divisors.
Terjedelem/Fizikai jellemzők:18-38
ISSN:0001-6969