Preservers of isometries

Let γ be a unimodular complex number, and let k be an integer. Then γAk is an isometry for any isometry A of a complex Banach space. It is shown that if f is an analytic function on the unit circle sending an isometry to an isometry for any norm, then f has the form z 7→ γzk for some unimodular γ an...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Ilišević Dijana
Kuzma Bojan
Li Chi-Kwong
Poon Edward
Dokumentumtípus: Cikk
Megjelent: 2018
Sorozat:Acta scientiarum mathematicarum 84 No. 1-2
Kulcsszavak:Izometria
Online Access:http://acta.bibl.u-szeged.hu/55800
LEADER 01410nab a2200229 i 4500
001 acta55800
005 20210325154354.0
008 181110s2018 hu o 0|| zxx d
022 |a 0001-6969 
040 |a SZTE Egyetemi Kiadványok Repozitórium  |b hun 
041 |a zxx 
100 1 |a Ilišević Dijana 
245 1 0 |a Preservers of isometries  |h [elektronikus dokumentum] /  |c  Ilišević Dijana 
260 |c 2018 
300 |a 3-17 
490 0 |a Acta scientiarum mathematicarum  |v 84 No. 1-2 
520 3 |a Let γ be a unimodular complex number, and let k be an integer. Then γAk is an isometry for any isometry A of a complex Banach space. It is shown that if f is an analytic function on the unit circle sending an isometry to an isometry for any norm, then f has the form z 7→ γzk for some unimodular γ and integer k. The same conclusion on f can be deduced if f is merely continuous and preserves the isometries of some special classes of norms on a fixed finite-dimensional complex Banach space. The result is extended to real Banach spaces X with dim X ≥ 4, and it is shown that one cannot get the same conclusion on f if dim X < 4. Further extensions of these results are also considered. 
695 |a Izometria 
700 0 1 |a Kuzma Bojan  |e aut 
700 0 1 |a Li Chi-Kwong  |e aut 
700 0 1 |a Poon Edward  |e aut 
856 4 0 |u http://acta.bibl.u-szeged.hu/55800/1/math_084_numb_001-002_003-017.pdf  |z Dokumentum-elérés