Preservers of isometries
Let γ be a unimodular complex number, and let k be an integer. Then γAk is an isometry for any isometry A of a complex Banach space. It is shown that if f is an analytic function on the unit circle sending an isometry to an isometry for any norm, then f has the form z 7→ γzk for some unimodular γ an...
Elmentve itt :
Szerzők: | |
---|---|
Dokumentumtípus: | Cikk |
Megjelent: |
2018
|
Sorozat: | Acta scientiarum mathematicarum
84 No. 1-2 |
Kulcsszavak: | Izometria |
Online Access: | http://acta.bibl.u-szeged.hu/55800 |
LEADER | 01410nab a2200229 i 4500 | ||
---|---|---|---|
001 | acta55800 | ||
005 | 20210325154354.0 | ||
008 | 181110s2018 hu o 0|| zxx d | ||
022 | |a 0001-6969 | ||
040 | |a SZTE Egyetemi Kiadványok Repozitórium |b hun | ||
041 | |a zxx | ||
100 | 1 | |a Ilišević Dijana | |
245 | 1 | 0 | |a Preservers of isometries |h [elektronikus dokumentum] / |c Ilišević Dijana |
260 | |c 2018 | ||
300 | |a 3-17 | ||
490 | 0 | |a Acta scientiarum mathematicarum |v 84 No. 1-2 | |
520 | 3 | |a Let γ be a unimodular complex number, and let k be an integer. Then γAk is an isometry for any isometry A of a complex Banach space. It is shown that if f is an analytic function on the unit circle sending an isometry to an isometry for any norm, then f has the form z 7→ γzk for some unimodular γ and integer k. The same conclusion on f can be deduced if f is merely continuous and preserves the isometries of some special classes of norms on a fixed finite-dimensional complex Banach space. The result is extended to real Banach spaces X with dim X ≥ 4, and it is shown that one cannot get the same conclusion on f if dim X < 4. Further extensions of these results are also considered. | |
695 | |a Izometria | ||
700 | 0 | 1 | |a Kuzma Bojan |e aut |
700 | 0 | 1 | |a Li Chi-Kwong |e aut |
700 | 0 | 1 | |a Poon Edward |e aut |
856 | 4 | 0 | |u http://acta.bibl.u-szeged.hu/55800/1/math_084_numb_001-002_003-017.pdf |z Dokumentum-elérés |