Preservers of isometries

Let γ be a unimodular complex number, and let k be an integer. Then γAk is an isometry for any isometry A of a complex Banach space. It is shown that if f is an analytic function on the unit circle sending an isometry to an isometry for any norm, then f has the form z 7→ γzk for some unimodular γ an...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Ilišević Dijana
Kuzma Bojan
Li Chi-Kwong
Poon Edward
Dokumentumtípus: Cikk
Megjelent: 2018
Sorozat:Acta scientiarum mathematicarum 84 No. 1-2
Kulcsszavak:Izometria
Online Access:http://acta.bibl.u-szeged.hu/55800
Leíró adatok
Tartalmi kivonat:Let γ be a unimodular complex number, and let k be an integer. Then γAk is an isometry for any isometry A of a complex Banach space. It is shown that if f is an analytic function on the unit circle sending an isometry to an isometry for any norm, then f has the form z 7→ γzk for some unimodular γ and integer k. The same conclusion on f can be deduced if f is merely continuous and preserves the isometries of some special classes of norms on a fixed finite-dimensional complex Banach space. The result is extended to real Banach spaces X with dim X ≥ 4, and it is shown that one cannot get the same conclusion on f if dim X < 4. Further extensions of these results are also considered.
Terjedelem/Fizikai jellemzők:3-17
ISSN:0001-6969