Stability and Hopf bifurcation of a diffusive Gompertz population model with nonlocal delay effect

In this paper, we investigate the dynamics of a diffusive Gompertz population model with nonlocal delay effect and Dirichlet boundary condition. The stability of the positive spatially nonhomogeneous steady-state solutions and the existence of Hopf bifurcations with the change of the time delay are...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Sun Xiuli
Wang Luan
Tian Baochuan
Dokumentumtípus: Folyóirat
Megjelent: 2018
Sorozat:Electronic journal of qualitative theory of differential equations
Kulcsszavak:Bifurkációelmélet
Online Access:http://acta.bibl.u-szeged.hu/55692
Leíró adatok
Tartalmi kivonat:In this paper, we investigate the dynamics of a diffusive Gompertz population model with nonlocal delay effect and Dirichlet boundary condition. The stability of the positive spatially nonhomogeneous steady-state solutions and the existence of Hopf bifurcations with the change of the time delay are discussed by analyzing the distribution of eigenvalues of the infinitesimal generator associated with the linearized system. Then we derive the stability and bifurcation direction of Hopf bifurcating periodic orbits by using the normal form theory and the center manifold reduction. Finally, we give some numerical simulations.
Terjedelem/Fizikai jellemzők:1-22
ISSN:1417-3875