The structure of pairing strategies for k-in-a-row type games

In Maker-Breaker positional games two players, Maker and Breaker, play on a finite or infinite board with the goal of claiming or preventing the opponent from getting a finite winning set, respectively. For different games there are several winning strategies for Maker or Breaker. One class of winni...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Győrffy Lajos
London András
Makay Géza
Dokumentumtípus: Cikk
Megjelent: 2017
Sorozat:Acta cybernetica 23 No. 2
Kulcsszavak:Játékelmélet, Kombinatorika, Hipergráf, Számítástechnika, Kibernetika
Tárgyszavak:
doi:10.14232/actacyb.23.2.2017.8

Online Access:http://acta.bibl.u-szeged.hu/50088
Leíró adatok
Tartalmi kivonat:In Maker-Breaker positional games two players, Maker and Breaker, play on a finite or infinite board with the goal of claiming or preventing the opponent from getting a finite winning set, respectively. For different games there are several winning strategies for Maker or Breaker. One class of winning strategies is the so-called pairing (paving) strategies. Here, we describe all possible pairing strategies for the 9-in-a-row game. Furthermore, we define a graph of the pairings, containing 194,543 vertices and 532,107 edges, in order to give them a structure. A complete characterization of the graph is also given.
Terjedelem/Fizikai jellemzők:561-572
ISSN:0324-721X