The structure of pairing strategies for k-in-a-row type games
In Maker-Breaker positional games two players, Maker and Breaker, play on a finite or infinite board with the goal of claiming or preventing the opponent from getting a finite winning set, respectively. For different games there are several winning strategies for Maker or Breaker. One class of winni...
Elmentve itt :
Szerzők: | |
---|---|
Dokumentumtípus: | Cikk |
Megjelent: |
2017
|
Sorozat: | Acta cybernetica
23 No. 2 |
Kulcsszavak: | Játékelmélet, Kombinatorika, Hipergráf, Számítástechnika, Kibernetika |
Tárgyszavak: | |
doi: | 10.14232/actacyb.23.2.2017.8 |
Online Access: | http://acta.bibl.u-szeged.hu/50088 |
Tartalmi kivonat: | In Maker-Breaker positional games two players, Maker and Breaker, play on a finite or infinite board with the goal of claiming or preventing the opponent from getting a finite winning set, respectively. For different games there are several winning strategies for Maker or Breaker. One class of winning strategies is the so-called pairing (paving) strategies. Here, we describe all possible pairing strategies for the 9-in-a-row game. Furthermore, we define a graph of the pairings, containing 194,543 vertices and 532,107 edges, in order to give them a structure. A complete characterization of the graph is also given. |
---|---|
Terjedelem/Fizikai jellemzők: | 561-572 |
ISSN: | 0324-721X |