Bounds on the stability number of a graph via the inverse theta function
In the paper we consider degree, spectral, and semidefinite bounds on the stability number of a graph. The bounds are obtained via reformulations and variants of the inverse theta function, a notion recently introduced by the author in a previous work.
Elmentve itt :
Szerző: | |
---|---|
Dokumentumtípus: | Cikk |
Megjelent: |
2016
|
Sorozat: | Acta cybernetica
22 No. 4 |
Kulcsszavak: | Programozás - függvény |
Tárgyszavak: | |
doi: | 10.14232/actacyb.22.4.2016.5 |
Online Access: | http://acta.bibl.u-szeged.hu/46421 |
Tartalmi kivonat: | In the paper we consider degree, spectral, and semidefinite bounds on the stability number of a graph. The bounds are obtained via reformulations and variants of the inverse theta function, a notion recently introduced by the author in a previous work. |
---|---|
Terjedelem/Fizikai jellemzők: | 97-112 |
ISSN: | 0324-721X |