Applications of the inverse theta number in stable set problems

In the paper we introduce a semidefinite upper bound on the square of the stability number of a graph, the inverse theta number, which is proved to be multiplicative with respect to the strong graph product, hence to be an upper bound for the square of the Shannon capacity of the graph. We also desc...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerző: Ujvári Miklós
Testületi szerző: Symposium on Programming Languages and Software Tools (2013) (Szeged)
Dokumentumtípus: Cikk
Megjelent: 2014
Sorozat:Acta cybernetica 21 No. 3
Kulcsszavak:Számítástechnika
Tárgyszavak:
doi:10.14232/actacyb.21.3.2014.12

Online Access:http://acta.bibl.u-szeged.hu/34480
Leíró adatok
Tartalmi kivonat:In the paper we introduce a semidefinite upper bound on the square of the stability number of a graph, the inverse theta number, which is proved to be multiplicative with respect to the strong graph product, hence to be an upper bound for the square of the Shannon capacity of the graph. We also describe a heuristic algorithm for the stable set problem based on semidefinite programming, Cholesky factorization, and eigenvector computation.
Terjedelem/Fizikai jellemzők:481-494
ISSN:0324-721X