Alphabetical satisfiability problem for trace equations
It is known that the satisfiability problem for equations over free partially commutative monoids is decidable but computationally hard. In this paper we consider the satisfiability problem for equations over free partially commutative monoids under the constraint that the solution is a subset of th...
Elmentve itt :
Szerzők: | |
---|---|
Testületi szerző: | |
Dokumentumtípus: | Cikk |
Megjelent: |
2009
|
Sorozat: | Acta cybernetica
19 No. 2 |
Kulcsszavak: | Számítástechnika, Kibernetika |
Tárgyszavak: | |
Online Access: | http://acta.bibl.u-szeged.hu/12875 |
Tartalmi kivonat: | It is known that the satisfiability problem for equations over free partially commutative monoids is decidable but computationally hard. In this paper we consider the satisfiability problem for equations over free partially commutative monoids under the constraint that the solution is a subset of the alphabet. We prove that this problem is NP-complete for quadratic equations and that its uniform version is NP-complete for linear equations. |
---|---|
Terjedelem/Fizikai jellemzők: | 479-497 |
ISSN: | 0324-721X |