A fixed point theorem for stronger association rules and its computational aspects
Each relation induces a new closure operator, which is (in the sense of data mining) stronger than or equal to the Galois one. The goal is to give some evidence that the new closure operator is often properly stronger than the Galois one. An easy characterization of the new closure operator as a lar...
Elmentve itt :
Szerző: | |
---|---|
Dokumentumtípus: | Cikk |
Megjelent: |
2009
|
Sorozat: | Acta cybernetica
19 No. 1 |
Kulcsszavak: | Számítástechnika, Kibernetika |
Tárgyszavak: | |
doi: | 10.14232/actacyb.19.1.2009.10 |
Online Access: | http://acta.bibl.u-szeged.hu/12858 |
Tartalmi kivonat: | Each relation induces a new closure operator, which is (in the sense of data mining) stronger than or equal to the Galois one. The goal is to give some evidence that the new closure operator is often properly stronger than the Galois one. An easy characterization of the new closure operator as a largest fixed point of an appropriate contraction map leads to a (modest) computer program. Finally, various experimental results obtained by this program give the desired evidence. |
---|---|
Terjedelem/Fizikai jellemzők: | 149-158 |
ISSN: | 0324-721X |