Automata with finite congruence lattices

In this paper we prove that if the congruence lattice of an automaton A is finite then the endomorphism semigroup E(A) of A is finite. Moreover, if A is commutative then A is A-finite. We prove that if 3 ≤ |A| then a commutative automaton A is simple if and only if it is a cyclic permutation automat...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerző: Babcsányi István
Dokumentumtípus: Cikk
Megjelent: 2007
Sorozat:Acta cybernetica 18 No. 1
Kulcsszavak:Számítástechnika, Kibernetika
Tárgyszavak:
Online Access:http://acta.bibl.u-szeged.hu/12808
Leíró adatok
Tartalmi kivonat:In this paper we prove that if the congruence lattice of an automaton A is finite then the endomorphism semigroup E(A) of A is finite. Moreover, if A is commutative then A is A-finite. We prove that if 3 ≤ |A| then a commutative automaton A is simple if and only if it is a cyclic permutation automaton of prime order. We also give some results concerning cyclic, strongly connected and strongly trap-connected automata.
Terjedelem/Fizikai jellemzők:155-165
ISSN:0324-721X