On Armstrong relations for strong dependencies
The strong dependency has been introduced and axiomatized in [2], [3], [4], [5]. The aim of this paper is to investigate on Armstrong relations for strong dependencies. We give a necessary and sufficient condition for an abitrary relation to be Armstrong relation of a given strong scheme. We also g...
Elmentve itt :
Szerzők: | |
---|---|
Dokumentumtípus: | Cikk |
Megjelent: |
2006
|
Sorozat: | Acta cybernetica
17 No. 3 |
Kulcsszavak: | Számítástechnika, Kibernetika |
Tárgyszavak: | |
Online Access: | http://acta.bibl.u-szeged.hu/12780 |
LEADER | 01449nab a2200229 i 4500 | ||
---|---|---|---|
001 | acta12780 | ||
005 | 20220616102915.0 | ||
008 | 161015s2006 hu o 0|| eng d | ||
022 | |a 0324-721X | ||
040 | |a SZTE Egyetemi Kiadványok Repozitórium |b hun | ||
041 | |a eng | ||
100 | 1 | |a Thi Vu Duc | |
245 | 1 | 3 | |a On Armstrong relations for strong dependencies |h [elektronikus dokumentum] / |c Thi Vu Duc |
260 | |c 2006 | ||
300 | |a 521-531 | ||
490 | 0 | |a Acta cybernetica |v 17 No. 3 | |
520 | 3 | |a The strong dependency has been introduced and axiomatized in [2], [3], [4], [5]. The aim of this paper is to investigate on Armstrong relations for strong dependencies. We give a necessary and sufficient condition for an abitrary relation to be Armstrong relation of a given strong scheme. We also give an effective algorithm finding a relation r such that r is Armstrong relation of a given strong scheme G = (U,S) (i.e. Sr = S+, where Sr is a full family of strong dependencies of r, and S+ is a set of all strong dependencies that can be derived from S by the system of axioms). We estimate this algorithm. We show that the time complexity of this algorithm is polynomial in |U| and |S|. | |
650 | 4 | |a Természettudományok | |
650 | 4 | |a Számítás- és információtudomány | |
695 | |a Számítástechnika, Kibernetika | ||
700 | 0 | 1 | |a Nguyen Hoang Son |e aut |
856 | 4 | 0 | |u http://acta.bibl.u-szeged.hu/12780/1/Thi_2006_ActaCybernetica.pdf |z Dokumentum-elérés |