Note on the work function algorithm
We prove that the work function algorithm is (n-l)-competitive for the k-server problem, where n is the number of points in the metric space. This gives improved upper bounds when k +3 < n < 2k-1; in particular, it shows that the work function algorithm is optimal for k = n-1. Recently this re...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Published: |
2000
|
Series: | Acta cybernetica
14 No. 3 |
Kulcsszavak: | Számítástechnika, Kibernetika, Algoritmus |
Subjects: | |
Online Access: | http://acta.bibl.u-szeged.hu/12644 |
Summary: | We prove that the work function algorithm is (n-l)-competitive for the k-server problem, where n is the number of points in the metric space. This gives improved upper bounds when k +3 < n < 2k-1; in particular, it shows that the work function algorithm is optimal for k = n-1. Recently this result was proved independently by Koutsoupias in [K]. |
---|---|
Physical Description: | 503-506 |
ISSN: | 0324-721X |