Local and global uncertainty in binary tomographic reconstruction

Abstract In binary tomography the goal is to reconstruct the inner structure of homogeneous objects from their projections. This is usually required from a low number of projections, which are also likely to be affected by noise and measurement errors. In general, the distorted and incomplete projec...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Varga László
Nyúl László
Nagy Antal
Balázs Péter Attila
Dokumentumtípus: Cikk
Megjelent: 2014
Sorozat:Computer Vision and Image Understanding 129
doi:10.1016/j.cviu.2014.05.006

mtmt:2567448
Online Access:http://publicatio.bibl.u-szeged.hu/9394
LEADER 01949nab a2200241 i 4500
001 publ9394
005 20191113102437.0
008 170517s2014 hu o 0|| zxx d
022 |a 1077-3142 
024 7 |a 10.1016/j.cviu.2014.05.006  |2 doi 
024 7 |a 2567448  |2 mtmt 
040 |a SZTE Publicatio Repozitórium  |b hun 
041 |a zxx 
100 1 |a Varga László 
245 1 0 |a Local and global uncertainty in binary tomographic reconstruction  |h [elektronikus dokumentum] /  |c  Varga László 
260 |c 2014 
300 |a 52 - 62 
490 0 |a Computer Vision and Image Understanding  |v 129 
520 3 |a Abstract In binary tomography the goal is to reconstruct the inner structure of homogeneous objects from their projections. This is usually required from a low number of projections, which are also likely to be affected by noise and measurement errors. In general, the distorted and incomplete projection data holds insufficient information for the correct reconstruction of the original object. In this paper, we describe two methods for approximating the local uncertainty of the reconstructions, i.e., identifying how the information stored in the projections determine each part of the reconstructed image. These methods can measure the uncertainty of the reconstruction without any knowledge from the original object itself. Moreover, we provide a global uncertainty measure that can assess the information content of a projection set and predict the error to be expected in the reconstruction of a homogeneous object. We also give an experimental evaluation of our proposed methods, mention some of their possible applications, and describe how the uncertainty measure can be used to improve the performance of the {DART} reconstruction algorithm.  
700 0 1 |a Nyúl László  |e aut 
700 0 1 |a Nagy Antal  |e aut 
700 0 1 |a Balázs Péter Attila  |e aut 
856 4 0 |u http://publicatio.bibl.u-szeged.hu/9394/1/07a_CVIU_2013.pdf  |z Dokumentum-elérés