17-Oxime ethers of oxidized ecdysteroid derivatives modulate oxidative stress in human brain endothelial cells and dose-dependently might protect or damage the blood-brain barrier
20-Hydroxyecdysone and several of its oxidized derivatives exert cytoprotective effect in mammals including humans. Inspired by this bioactivity of ecdysteroids, in the current study it was our aim to prepare a set of sidechain-modified derivatives and to evaluate their potential to protect the bloo...
Elmentve itt :
Szerzők: | |
---|---|
Dokumentumtípus: | Cikk |
Megjelent: |
2024
|
Sorozat: | PLOS ONE
19 No. 2 |
Tárgyszavak: | |
doi: | 10.1371/journal.pone.0290526 |
mtmt: | 34691003 |
Online Access: | http://publicatio.bibl.u-szeged.hu/29721 |
LEADER | 02729nab a2200313 i 4500 | ||
---|---|---|---|
001 | publ29721 | ||
005 | 20240229093306.0 | ||
008 | 240229s2024 hu o 0|| eng d | ||
022 | |a 1932-6203 | ||
024 | 7 | |a 10.1371/journal.pone.0290526 |2 doi | |
024 | 7 | |a 34691003 |2 mtmt | |
040 | |a SZTE Publicatio Repozitórium |b hun | ||
041 | |a eng | ||
100 | 1 | |a Vágvölgyi Máté | |
245 | 1 | 0 | |a 17-Oxime ethers of oxidized ecdysteroid derivatives modulate oxidative stress in human brain endothelial cells and dose-dependently might protect or damage the blood-brain barrier |h [elektronikus dokumentum] / |c Vágvölgyi Máté |
260 | |c 2024 | ||
300 | |a 15 | ||
490 | 0 | |a PLOS ONE |v 19 No. 2 | |
520 | 3 | |a 20-Hydroxyecdysone and several of its oxidized derivatives exert cytoprotective effect in mammals including humans. Inspired by this bioactivity of ecdysteroids, in the current study it was our aim to prepare a set of sidechain-modified derivatives and to evaluate their potential to protect the blood-brain barrier (BBB) from oxidative stress. Six novel ecdysteroids, including an oxime and five oxime ethers, were obtained through regioselective synthesis from a sidechain-cleaved calonysterone derivative 2 and fully characterized by comprehensive NMR techniques revealing their complete 1 H and 13 C signal assignments. Surprisingly, several compounds sensitized hCMEC/D3 brain microvascular endothelial cells to tert -butyl hydroperoxide (tBHP)-induced oxidative damage as recorded by impedance measurements. Compound 8 , containing a benzyloxime ether moiety in its sidechain, was the only one that exerted a protective effect at a higher, 10 μM concentration, while at lower (10 nM– 1 μM) concentrations it promoted tBHP-induced cellular damage. Brain endothelial cells were protected from tBHP-induced barrier integrity decrease by treatment with 10 μM of compound 8 , which also mitigated the intracellular reactive oxygen species production elevated by tBHP. Based on our results, 17-oxime ethers of oxidized ecdysteroids modulate oxidative stress of the BBB in a way that may point towards unexpected toxicity. Further studies are needed to evaluate any possible risk connected to dietary ecdysteroid consumption and CNS pathologies in which BBB damage plays an important role. | |
650 | 4 | |a Farmakológia és gyógyszerészet | |
700 | 0 | 1 | |a Laczkó Dávid |e aut |
700 | 0 | 2 | |a Santa-Maria Ana Raquel |e aut |
700 | 0 | 2 | |a Vigh Judit P. |e aut |
700 | 0 | 2 | |a Walter Fruzsina R. |e aut |
700 | 0 | 2 | |a Berkecz Róbert |e aut |
700 | 0 | 2 | |a Deli Mária A. |e aut |
700 | 0 | 2 | |a Tóth Gábor |e aut |
700 | 0 | 2 | |a Hunyadi Attila |e aut |
856 | 4 | 0 | |u http://publicatio.bibl.u-szeged.hu/29721/1/journal.pone.0290526.pdf |z Dokumentum-elérés |