Intersection of random spanning trees in complex networks

In their previous work, the authors considered the concept of random spanning tree intersection of complex networks (London and Pluhár, in: Cherifi, Mantegna, Rocha, Cherifi, Micciche (eds) Complex networks and their applications XI, Springer, Cham, 2023). A simple formula was derived for the size o...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: London András
Pluhár András
Dokumentumtípus: Cikk
Megjelent: 2023
Sorozat:APPLIED NETWORK SCIENCE 8 No. 1
Tárgyszavak:
doi:10.1007/s41109-023-00600-4

mtmt:34197583
Online Access:http://publicatio.bibl.u-szeged.hu/28501
LEADER 01473nab a2200229 i 4500
001 publ28501
005 20231025083819.0
008 231025s2023 hu o 0|| Angol d
022 |a 2364-8228 
024 7 |a 10.1007/s41109-023-00600-4  |2 doi 
024 7 |a 34197583  |2 mtmt 
040 |a SZTE Publicatio Repozitórium  |b hun 
041 |a Angol 
100 1 |a London András 
245 1 0 |a Intersection of random spanning trees in complex networks  |h [elektronikus dokumentum] /  |c  London András 
260 |c 2023 
300 |a 12 
490 0 |a APPLIED NETWORK SCIENCE  |v 8 No. 1 
520 3 |a In their previous work, the authors considered the concept of random spanning tree intersection of complex networks (London and Pluhár, in: Cherifi, Mantegna, Rocha, Cherifi, Micciche (eds) Complex networks and their applications XI, Springer, Cham, 2023). A simple formula was derived for the size of the minimum expected intersection of two spanning trees chosen uniformly at random. Monte Carlo experiments were run for real networks. In this paper, we provide a broader context and motivations for the concept, discussing its game theoretic origins, examples, its applications to network optimization problems, and its potential use in quantifying the resilience and modular structure of complex networks. 
650 4 |a Számítás- és információtudomány 
700 0 1 |a Pluhár András  |e aut 
856 4 0 |u http://publicatio.bibl.u-szeged.hu/28501/1/s41109-023-00600-4.pdf  |z Dokumentum-elérés