Tight bounds for NF-based bounded-space online bin packing algorithms

In Zheng et al. (J Comb Optim 30(2):360–369, 2015) modelled a surgery problem by the one-dimensional bin packing, and developed a semi-online algorithm to give an efficient feasible solution. In their algorithm they used a buffer to temporarily store items, having a possibility to lookahead in the l...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Békési József
Galambos Gábor
Dokumentumtípus: Cikk
Megjelent: 2018
Sorozat:JOURNAL OF COMBINATORIAL OPTIMIZATION 35 No. 2
Tárgyszavak:
doi:10.1007/s10878-017-0175-4

mtmt:3272000
Online Access:http://publicatio.bibl.u-szeged.hu/28445
LEADER 02248nab a2200241 i 4500
001 publ28445
005 20231017142113.0
008 231017s2018 hu o 0|| Angol d
022 |a 1382-6905 
024 7 |a 10.1007/s10878-017-0175-4  |2 doi 
024 7 |a 3272000  |2 mtmt 
040 |a SZTE Publicatio Repozitórium  |b hun 
041 |a Angol 
100 1 |a Békési József 
245 1 0 |a Tight bounds for NF-based bounded-space online bin packing algorithms  |h [elektronikus dokumentum] /  |c  Békési József 
260 |c 2018 
300 |a 350-364 
490 0 |a JOURNAL OF COMBINATORIAL OPTIMIZATION  |v 35 No. 2 
520 3 |a In Zheng et al. (J Comb Optim 30(2):360–369, 2015) modelled a surgery problem by the one-dimensional bin packing, and developed a semi-online algorithm to give an efficient feasible solution. In their algorithm they used a buffer to temporarily store items, having a possibility to lookahead in the list. Because of the considered practical problem they investigated the 2-parametric case, when the size of the items is at most 1/2. Using an NF-based online algorithm the authors proved an ACR of 13/9 = 1.44 … for any given buffer size not less than 1. They also gave a lower bound of 4/3 = 1.33 … for the bounded-space algorithms that use NF-based rules. Later, in Zhang et al. (J Comb Optim 33(2):530–542, 2017) an algorithm was given with an ACR of 1.4243, and the authors improved the lower bound to 1.4230. In this paper we present a tight lower bound of h∞ (r) for the r-parametric problem when the buffer capacity is 3. Since h∞ (2) = 1.42312 …, our result—as a special case—gives a tight bound for the algorithm-class given in 2017. To prove that the lower bound is tight, we present an NF-based online algorithm that considers the r-parametric problem, and uses a buffer with capacity of 3. We prove that this algorithm has an ACR that is equal to the lower bounds for arbitrary r. © Springer Science+Business Media, LLC 2017. 
650 4 |a Számítás- és információtudomány 
700 0 1 |a Galambos Gábor  |e aut 
856 4 0 |u http://publicatio.bibl.u-szeged.hu/28445/1/nfbased0723.pdf  |z Dokumentum-elérés  
856 4 0 |u http://publicatio.bibl.u-szeged.hu/28445/3/3272000_megjelent.pdf  |z Dokumentum-elérés