Application of self-supervised approaches to the classification of X-ray diffraction spectra during phase transitions

Spectroscopy and X-ray diffraction techniques encode ample information on investigated samples. The ability of rapidly and accurately extracting these enhances the means to steer the experiment, as well as the understanding of the underlying processes governing the experiment. It improves the effici...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Sun Yue
Brockhauser Sandor
Hegedűs Péter
Plückthun Christian
Gelisio Luca
de Lima Danilo Enoque Ferreira
Dokumentumtípus: Cikk
Megjelent: 2023
Sorozat:SCIENTIFIC REPORTS 13 No. 1
Tárgyszavak:
doi:10.1038/s41598-023-36456-y

mtmt:34057507
Online Access:http://publicatio.bibl.u-szeged.hu/28186
LEADER 02076nab a2200277 i 4500
001 publ28186
005 20230907115930.0
008 230907s2023 hu o 0|| Angol d
022 |a 2045-2322 
024 7 |a 10.1038/s41598-023-36456-y  |2 doi 
024 7 |a 34057507  |2 mtmt 
040 |a SZTE Publicatio Repozitórium  |b hun 
041 |a Angol 
100 1 |a Sun Yue 
245 1 0 |a Application of self-supervised approaches to the classification of X-ray diffraction spectra during phase transitions  |h [elektronikus dokumentum] /  |c  Sun Yue 
260 |c 2023 
300 |a 16 
490 0 |a SCIENTIFIC REPORTS  |v 13 No. 1 
520 3 |a Spectroscopy and X-ray diffraction techniques encode ample information on investigated samples. The ability of rapidly and accurately extracting these enhances the means to steer the experiment, as well as the understanding of the underlying processes governing the experiment. It improves the efficiency of the experiment, and maximizes the scientific outcome. To address this, we introduce and validate three frameworks based on self-supervised learning which are capable of classifying 1D spectral curves using data transformations preserving the scientific content and only a small amount of data labeled by domain experts. In particular, in this work we focus on the identification of phase transitions in samples investigated by x-ray powder diffraction. We demonstrate that the three frameworks, based either on relational reasoning, contrastive learning, or a combination of the two, are capable of accurately identifying phase transitions. Furthermore, we discuss in detail the selection of data augmentation techniques, crucial to ensure that scientifically meaningful information is retained. 
650 4 |a Számítás- és információtudomány 
700 0 1 |a Brockhauser Sandor  |e aut 
700 0 1 |a Hegedűs Péter  |e aut 
700 0 1 |a Plückthun Christian  |e aut 
700 0 1 |a Gelisio Luca  |e aut 
700 0 2 |a de Lima Danilo Enoque Ferreira  |e aut 
856 4 0 |u http://publicatio.bibl.u-szeged.hu/28186/1/s41598-023-36456-y.pdf  |z Dokumentum-elérés